Comparison of Model and Measured Power from a WEC Ocean Deployment

Kate Edwards, James Bretl, John Montgomery, Mike Mekhiche, and Bruce Downie
Background: OPT PowerBuoy®

• Ocean Power Technologies Inc.
 – Moored buoys which capture power from ocean waves
 – Periodic ocean testing since 1997
 – Ongoing optimization of Power Takeoff and structure
 – Upcoming ocean tests off NJ in 2015

• PowerBuoy
 – Surface float moves along spar; drives thrust rod into PTO inside spar. Linear motion translated to rotation of generator. Seek to minimize conversion stages and component losses.
 – Resulting power output supplied to payload or grid
 – Long-term operation, so system and mooring must withstand marine environment
Role of Modeling in PowerBuoy Development

- Analysis needs
 - Power, load performance of candidate geometry concepts
 - Mooring design
 - Effect of PTO limits, PTO efficiency/losses, braking behavior
 - Design and fatigue load specification for PTO, structure, and mooring
 - Towout

- **STORM (Simulink to OrcaFlex Realtime Model)**
 - Replaces prior OPT models. Main benefit: more flexible.
 - Combines WAMIT (hydrodynamic coefficients), OrcaFlex (PowerBuoy motions in irregular waves), Simulink (PTO behavior), Matlab (scripting/analysis)
 - Can vary PowerBuoy geometry, mooring components, MetOcean conditions, PTO control
 - Validation against tank measurements (Bretl et al., June 2015 OMAE: 3 PowerBuoy geometries, 3 PTO controls)
Example Comparison of STORM to Tank Results

• Scale model of PB150 PowerBuoy, compliant 3-leg mooring, resistive PTO control
• OPT Tank test data collected at Memorial University of Newfoundland
• Tank generated waves with desired wave statistics, Bretschneider spectra
• STORM simulations reasonably close to tank measurements
• Similar performance for other geometries (Bretl et al. 2015).

<table>
<thead>
<tr>
<th>Hs (m)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.17</td>
<td>0.84</td>
<td>0.79</td>
<td>1.02</td>
<td>1.02</td>
</tr>
<tr>
<td>Ta (s)</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

OrcaFlex Screenshot
How Ocean Test Differs from Tank

<table>
<thead>
<tr>
<th></th>
<th>Tank Test</th>
<th>Ocean Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waves</td>
<td>Idealized spectral shape, controlled conditions, full set of sea states</td>
<td>Multiple peaks, biased toward common sea states</td>
</tr>
<tr>
<td>Friction</td>
<td>Can minimize (lubrication, adjustments)</td>
<td>Components selected for additional criteria (longevity, availability)</td>
</tr>
<tr>
<td>Measurements</td>
<td>Extensive</td>
<td>Limited by bandwidth, data handling</td>
</tr>
</tbody>
</table>
Ocean Test

• LEAP (Littoral Expeditionary Autonomous PowerBuoy) – First APB350 generation
 – Power source for HF radar payload
 – Rutgers and CODAR: coastal radar network
 – Naval Undersea Warfare Center Keyport funded

• Completed 3-month ocean test (Oct 2011)
 – Site in 37m water depth off New Jersey
 – Measured power flow, system health
 – Powered payload continuously per operational plan
 – On station and operational during Hurricane Irene
 – Sufficient range of sea states to fill out power matrix; can then project power performance for any known wave climate.
APB-350 2011 Ocean Test Off the Coast of NJ

- **Customer:** US Navy
- **Location:** New Jersey
- **Purpose:** Maritime Surveillance (High Frequency)
- **Results:**
 - 400W Continuous Power
 - 1500W Peak Power
 - Survived Hurricane
 - Fully Autonomous Operation
PowerBuoy Measurements

- Sensors to measure system health, behavior, power flow
 - Data transmitted to shore and captured in archive

- Focus: Power at input to generator, $P_{Mech} = \beta_{PTO} v^2$
 - Constant PTO damping commanded throughout deployment, β_{PTO}
 - Does not include friction upstream of generator

- During 3-month deployment, covered most 'typical' sea states
 - Bin data by sea state and obtain power matrix
 - How does STORM compare?
Ocean Test: Wave Data Collection

- ADCP (Acoustic Doppler Current Profiler)
- Data processed with WavesMon software (Teledyne RDI, B. Strong)
- Calculates spectra from 3 sources: surface tracking, velocity, and pressure sensor.
 - Surface tracking preferred since does not attenuate short-period waves, but requires wind-roughened surface
 - Wave statistics (Hs, Ta) derived from best spectrum
• STORM did not include friction upstream of measurement point (frictional damping or constant friction force)

• Greater differences between STORM and measurements (0.5-1.3) than tank comparison (0.8-1.1) for same sea states
 - Greatest misfit at common sea states, which are heavily weighted in site average power

• Data binned based on Hs, Ta (simulations generated with idealized spectral shape, Bretschneider)
Some Improvement when Friction Included

- Tuned frictional damping and constant friction force to reduce misfit in common sea states (before 0.4-0.7, now 0.7-1.1), but increased misfit in higher sea states (before 0.7-0.9, now 1.2-1.4)

- Investigation ongoing, to better understand source of misfit (friction and other factors)
Scatter of Mechanical Power from Ocean Test

Scatter Of Power Measurements
Max-min Range Within Sea State Bin, Divided by Bin Average

<table>
<thead>
<tr>
<th>Height (m)</th>
<th>Period (s)</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
<th>3.5</th>
<th>4</th>
<th>4.5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>3</td>
<td>2.6</td>
<td>4</td>
<td>0.26</td>
<td>1.5</td>
<td>1.4</td>
<td>0.97</td>
<td>0.79</td>
<td>0.59</td>
<td>0.21</td>
</tr>
<tr>
<td>1</td>
<td>4.1</td>
<td>3.6</td>
<td>6</td>
<td>3.6</td>
<td>6</td>
<td>1.5</td>
<td>0.085</td>
<td>0.34</td>
<td>0.4</td>
<td>0.29</td>
</tr>
<tr>
<td>1.5</td>
<td>2.3</td>
<td>2.7</td>
<td>2</td>
<td>2.7</td>
<td>2</td>
<td>2.7</td>
<td>1.5</td>
<td>1.4</td>
<td>0.97</td>
<td>0.21</td>
</tr>
<tr>
<td>2</td>
<td>0.093</td>
<td>1.2</td>
<td>1.6</td>
<td>1.3</td>
<td>1.6</td>
<td>1.1</td>
<td>0.093</td>
<td>0.34</td>
<td>0.4</td>
<td>0.29</td>
</tr>
<tr>
<td>2.5</td>
<td>0.45</td>
<td>1.1</td>
<td>1.1</td>
<td>0.43</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.4</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.24</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>0.16</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.24</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>0.24</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.24</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
<td></td>
</tr>
</tbody>
</table>

- Range of measured values is highest in sea states (low/moderate) where STORM misfit is greatest
- Need to understand the source of scatter within a sea state bin
 - Measurements: Bin all data based on ADCP Hs/Ta
 - Differs from STORM: Generate ideal spectra with bin’s central Hs/Ta
Adequacy of Ideal Spectra Shape for Site?

- One measure of fit of spectral shape: Expect Tp/Ta=1.29 for Bretschneider
- Close to most commonly occurring value, but wide variance
- Wave statistics from ADCP measurements calculated by RDI WavesMon software
• From ADCP spectra, estimate wave statistics (Hs, Tp)
• Using same statistics, generate idealized spectra (Bretschneider). Expect Tp/Ta=1.29, here 0.79.
• Misfit expected to matter for power output; device most responsive at T≤7s
• For each hour of deployment, used measured ADCP spectra to run STORM simulation. Does power prediction improve?
Compare Measured Power to STORM Simulations

• Black line: Measured mechanical power from ocean test
• Dots: STORM time-averaged mechanical power using ADCP spectra as input. (Tuned friction not applied.)
• Color indicates whether ADCP estimated spectra from surface tracking, velocity, or pressure sensor
 - Reasonable performance *unless* pressure sensor (green) is used, due to poor resolution of shorter wave periods (attenuation in 37m water depth)
Better Model Performance from Real Spectra

- Average data in bins of H_s and T_a
- Scatter reduced if ADCP spectra are used. Ocean test/STORM = 0.8.
• Compared to ocean test, closer (0.7-1.1) than original (0.4-1.0), especially in common sea states

• Still binning by sea state
How to Incorporate Spectral Shape?

- Power matrix: easy to use (function of 2 variables, Hs and Ta); independent of site
- If must incorporate spectral shape, how?
- Active research area
 - Saulnier et al. (2011): Wave groupiness and spectral bandwidth as relevant parameters for the performance assessment of WECs, Ocean Eng. 38(1), 130-147.
Summary

• **Lesson learned**
 − For upcoming deployments (summer 2015), use measured spectra as simulation input
 − Measure mechanical power as far upstream of friction as possible

• **Next steps: Weighing how to summarize PowerBuoy performance**
 − Simple Hs/Ta description inadequate, but convenient
 − Want power performance information which is independent of site
Acknowledgements

- LEAP (Naval Undersea Warfare Center Keyport, USCG, Rutgers, CODAR)
- DOE: PB150 tank tests
- Matlab, Orcina
- Tank staff at Memorial University of Newfoundland
- DOE, NREL for METS